As a prominent instance of vandalism edits, Wiki search poisoning for illicit promotion is a cybercrime in which the adversary aims at editing Wiki articles to promote illicit businesses through Wiki search results of relevant queries. In this paper, we report a study that, for the first time, shows that such stealthy blackhat SEO on Wiki can be automated. Our technique, called MAWSEO, employs adversarial revisions to achieve real-world cybercriminal objectives, including rank boosting, vandalism detection evasion, topic relevancy, semantic consistency, user awareness (but not alarming) of promotional content, etc. Our evaluation and user study demonstrate that MAWSEO is capable of effectively and efficiently generating adversarial vandalism edits, which can bypass state-of-the-art built-in Wiki vandalism detectors, and also get promotional content through to Wiki users without triggering their alarms. In addition, we investigated potential defense, including coherence based detection and adversarial training of vandalism detection, against our attack in the Wiki ecosystem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Wiki ,中文名为“围纪”(注:不是“维基”,这是“维基媒体基金会”的注冊商标),是一种在网络上开放且可供多人协同创作的超文本系统,由沃德·坎宁安于 1995 年首先开发。沃德·坎宁安将 Wiki 定义为「一种允许一群用户利用简单的描述来创建和连接一组网页的社会计算系统」。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员