Natural Language Processing (NLP) is becoming a dominant subset of artificial intelligence as the need to help machines understand human language looks indispensable. Several NLP applications are ubiquitous, partly due to the myriads of datasets being churned out daily through mediums like social networking sites. However, the growing development has not been evident in most African languages due to the persisting resource limitation, among other issues. Yor\`ub\'a language, a tonal and morphologically rich African language, suffers a similar fate, resulting in limited NLP usage. To encourage further research towards improving this situation, this systematic literature review aims to comprehensively analyse studies addressing NLP development for Yor\`ub\'a, identifying challenges, resources, techniques, and applications. A well-defined search string from a structured protocol was employed to search, select, and analyse 105 primary studies between 2014 and 2024 from reputable databases. The review highlights the scarcity of annotated corpora, limited availability of pre-trained language models, and linguistic challenges like tonal complexity and diacritic dependency as significant obstacles. It also revealed the prominent techniques, including rule-based methods, among others. The findings reveal a growing body of multilingual and monolingual resources, even though the field is constrained by socio-cultural factors such as code-switching and desertion of language for digital usage. This review synthesises existing research, providing a foundation for advancing NLP for Yor\`ub\'a and in African languages generally. It aims to guide future research by identifying gaps and opportunities, thereby contributing to the broader inclusion of Yor\`ub\'a and other under-resourced African languages in global NLP advancements.


翻译:暂无翻译

0
下载
关闭预览

相关内容

NLP:自然语言处理
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员