Learning from observations (LfO) replicates expert behavior without needing access to the expert's actions, making it more practical than learning from demonstrations (LfD) in many real-world scenarios. However, directly applying the on-policy training scheme in LfO worsens the sample inefficiency problem, while employing the traditional off-policy training scheme in LfO magnifies the instability issue. This paper seeks to develop an efficient and stable solution for the LfO problem. Specifically, we begin by exploring the generalization capabilities of both the reward function and policy in LfO, which provides a theoretical foundation for computation. Building on this, we modify the policy optimization method in generative adversarial imitation from observation (GAIfO) with distributional soft actor-critic (DSAC), and propose the Mimicking Observations through Distributional Update Learning with adequate Exploration (MODULE) algorithm to solve the LfO problem. MODULE incorporates the advantages of (1) high sample efficiency and training robustness enhancement in soft actor-critic (SAC), and (2) training stability in distributional reinforcement learning (RL). Extensive experiments in MuJoCo environments showcase the superior performance of MODULE over current LfO methods.
翻译:暂无翻译