Composed Image Retrieval (CIR) is a cross-modal task that aims to retrieve target images from large-scale databases using a reference image and a modification text. Most existing methods rely on a single model to perform feature fusion and similarity matching. However, this paradigm faces two major challenges. First, one model alone can't see the whole picture and the tiny details at the same time; it has to handle different tasks with the same weights, so it often misses the small but important links between image and text. Second, the absence of dynamic weight allocation prevents adaptive leveraging of complementary model strengths, so the resulting embedding drifts away from the target and misleads the nearest-neighbor search in CIR. To address these limitations, we propose Dynamic Adaptive Fusion (DAFM) for multi-model collaboration in CIR. Rather than optimizing a single method in isolation, DAFM exploits the complementary strengths of heterogeneous models and adaptively rebalances their contributions. This not only maximizes retrieval accuracy but also ensures that the performance gains are independent of the fusion order, highlighting the robustness of our approach. Experiments on the CIRR and FashionIQ benchmarks demonstrate consistent improvements. Our method achieves a Recall@10 of 93.21 and an Rmean of 84.43 on CIRR, and an average Rmean of 67.48 on FashionIQ, surpassing recent strong baselines by up to 4.5%. These results confirm that dynamic multi-model collaboration provides an effective and general solution for CIR.


翻译:组合图像检索(CIR)是一项跨模态任务,旨在利用参考图像和修改文本从大规模数据库中检索目标图像。现有方法大多依赖单一模型进行特征融合和相似度匹配。然而,该范式面临两大挑战:首先,单一模型无法同时兼顾全局概貌与局部细节;其必须使用相同权重处理不同任务,因此常忽略图像与文本间微小但关键的关联。其次,动态权重分配的缺失阻碍了互补模型优势的自适应利用,导致生成的嵌入向量偏离目标,误导CIR中的最近邻搜索。为突破这些局限,我们提出用于CIR多模型协作的动态自适应融合(DAFM)方法。DAFM并非孤立优化单一方法,而是利用异构模型的互补优势并自适应地重新平衡其贡献。这不仅最大化检索精度,且确保性能提升与融合顺序无关,凸显了方法的鲁棒性。在CIRR和FashionIQ基准测试上的实验显示出一致的改进:我们的方法在CIRR上实现Recall@10达93.21、Rmean达84.43,在FashionIQ上平均Rmean达67.48,较近期强基线最高提升4.5%。这些结果证实动态多模型协作为CIR提供了有效且通用的解决方案。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员