The growing scale, complexity, interconnectivity, and autonomy of modern software ecosystems introduce unprecedented uncertainty, challenging the foundations of traditional self-adaptation. Existing approaches, typically rule-driven controllers or isolated learning components, struggle to generalize to novel contexts or coordinate responses across distributed subsystems, leaving them ill-equipped for emergent unknown unknowns. Recent discussions on Self-Adaptation 2.0 emphasize an equal partnership between AI and adaptive systems, merging learning-driven intelligence with adaptive control for predictive and proactive behavior. Building on this foundation, we introduce POLARIS, a three-layer multi-agentic self-adaptation framework that advances beyond reactive adaptation. POLARIS integrates: (1) a low-latency Adapter layer for monitoring and safe execution, (2) a transparent Reasoning layer that generates and verifies plans using tool-aware, explainable agents, and (3) a Meta layer that records experiences and meta-learns improved adaptation policies over time. Through shared knowledge and predictive models, POLARIS handles uncertainty, learns from past actions, and evolves its strategies, enabling systems that anticipate change and maintain resilient, goal-directed behavior. Preliminary evaluation on two self-adaptive exemplars, SWIM and SWITCH, shows that POLARIS consistently outperforms state-of-the-art baselines. We argue this marks a shift toward Self-Adaptation 3.0, akin to Software 3.0: a paradigm where systems not only learn from their environment but also reason about and evolve their own adaptation processes, continuously improving to meet novel challenges.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员