Temporal context in medicine is valuable in assessing key changes in patient health over time. We developed a machine learning framework to integrate diverse context from prior visits to improve health monitoring, especially when prior visits are limited and their frequency is variable. Our model first estimates initial risk of disease using medical data from the most recent patient visit, then refines this assessment using information digested from previously collected imaging and/or clinical biomarkers. We applied our framework to prostate cancer (PCa) risk prediction using data from a large population (28,342 patients, 39,013 magnetic resonance imaging scans, 68,931 blood tests) collected over nearly a decade. For predictions of the risk of clinically significant PCa at the time of the visit, integrating prior context directly converted false positives to true negatives, increasing overall specificity while preserving high sensitivity. False positive rates were reduced progressively from 51% to 33% when integrating information from up to three prior imaging examinations, as compared to using data from a single visit, and were further reduced to 24% when also including additional context from prior clinical data. For predicting the risk of PCa within five years of the visit, incorporating prior context reduced false positive rates still further (64% to 9%). Our findings show that information collected over time provides relevant context to enhance the specificity of medical risk prediction. For a wide range of progressive conditions, sufficient reduction of false positive rates using context could offer a pathway to expand longitudinal health monitoring programs to large populations with comparatively low baseline risk of disease, leading to earlier detection and improved health outcomes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
基于深度元学习的因果推断新方法
图与推荐
12+阅读 · 2020年7月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关资讯
基于深度元学习的因果推断新方法
图与推荐
12+阅读 · 2020年7月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员