Learning-based methods are growing prominence for planning purposes. However, there are very few approaches for learning-assisted constrained path-planning on graphs, while there are multiple downstream practical applications. This is the case for constrained path-planning for Autonomous Unmanned Ground Vehicles (AUGV), typically deployed in disaster relief or search and rescue applications. In off-road environments, the AUGV must dynamically optimize a source-destination path under various operational constraints, out of which several are difficult to predict in advance and need to be addressed on-line. We propose a hybrid solving planner that combines machine learning models and an optimal solver. More specifically, a graph convolutional network (GCN) is used to assist a branch and bound (B&B) algorithm in handling the constraints. We conduct experiments on realistic scenarios and show that GCN support enables substantial speedup and smoother scaling to harder problems.


翻译:以学习为基础的方法在规划方面越来越突出,但是,在图表上很少采用学习辅助的有限路径规划方法,尽管有多种下游实际应用,例如,通常用于救灾或搜索和救援应用的自动无人驾驶地面车辆(AUGV)的有限路径规划方法;在非公路环境中,AUGV必须在各种业务制约下动态地优化源源预测路径,其中若干方法难以预先预测,需要在线处理。我们提议建立一个混合解决计划器,将机器学习模型和最佳求解器结合起来。更具体地说,一个图形共变网络(GCN)用于协助一个分支和捆绑(B&B)算法处理这些制约因素。我们在现实的情景上进行实验,并表明GCN的支持能够大大加快速度,并更顺利地推广到更困难的问题。

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2021年6月30日
专知会员服务
45+阅读 · 2020年10月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Arxiv
5+阅读 · 2021年2月8日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2021年6月30日
专知会员服务
45+阅读 · 2020年10月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员