An accurate and substantial dataset is necessary to train a reliable and well-performing model. However, even manually labeled datasets contain errors, not to mention automatically labeled ones. The problem of data denoising was addressed in different existing research, most of which focuses on the detection of outliers and their permanent removal - a process that is likely to over- or underfilter the dataset. In this work, we propose AGRA: a new method for Adaptive GRAdient-based outlier removal. Instead of cleaning the dataset prior to model training, the dataset is adjusted during the training process. By comparing the aggregated gradient of a batch of samples and an individual example gradient, our method dynamically decides whether a corresponding example is helpful for the model at this point or is counter-productive and should be left out for the current update. Extensive evaluation on several datasets demonstrates the AGRA effectiveness, while comprehensive results analysis supports our initial hypothesis: permanent hard outlier removal is not always what model benefits the most from.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
13+阅读 · 2022年4月12日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
Arxiv
14+阅读 · 2022年5月6日
Arxiv
13+阅读 · 2022年4月12日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
10+阅读 · 2021年2月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员