This paper proposes a method to construct pretext tasks for self-supervised learning on group equivariant neural networks. Group equivariant neural networks are the models whose structure is restricted to commute with the transformations on the input. Therefore, it is important to construct pretext tasks for self-supervised learning that do not contradict this equivariance. To ensure that training is consistent with the equivariance, we propose two concepts for self-supervised tasks: equivariant pretext labels and invariant contrastive loss. Equivariant pretext labels use a set of labels on which we can define the transformations that correspond to the input change. Invariant contrastive loss uses a modified contrastive loss that absorbs the effect of transformations on each input. Experiments on standard image recognition benchmarks demonstrate that the equivariant neural networks exploit the proposed equivariant self-supervised tasks.


翻译:本文建议了一种方法,用于在群体等同神经网络上进行自我监督学习的借口任务。 群体等同神经网络是其结构限于随输入的变换而通勤的模型。 因此,重要的是要为自我监督学习设计不与这种变相相矛盾的借口任务。 为确保培训与变相相一致,我们提出了自我监督任务的两个概念:等同的借口标签和无异的反差损失。 等同的借口标签使用一套标签,我们可以用来界定与输入变化相对应的变换。 异的反差损失使用一种经修改的对比损失,吸收变换对每种输入的影响。 标准图像识别基准的实验表明,等同神经网络利用了拟议的等同的自我监督任务。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员