Let $A \subseteq \{0,1\}^n$ be a set of size $2^{n-1}$, and let $\phi \colon \{0,1\}^{n-1} \to A$ be a bijection. We define the average stretch of $\phi$ as ${\sf avgStretch}(\phi) = {\mathbb E}[{\sf dist}(\phi(x),\phi(x'))]$, where the expectation is taken over uniformly random $x,x' \in \{0,1\}^{n-1}$ that differ in exactly one coordinate. In this paper we continue the line of research studying mappings on the discrete hypercube with small average stretch. We prove the following results. (1) For any set $A \subseteq \{0,1\}^n$ of density $1/2$ there exists a bijection $\phi_A \colon \{0,1\}^{n-1} \to A$ such that ${\sf avgstretch}(\phi_A) = O(\sqrt{n})$. (2) For $n = 3^k$ let $A_{{\sf rec\text{-}maj}} = \{x \in \{0,1\}^n : {\sf rec\text{-}maj}(x) = 1\}$, where ${\sf rec\text{-}maj} : \{0,1\}^n \to \{0,1\}$ is the function recursive majority of 3's. There exists a bijection $\phi_{{\sf rec\text{-}maj}} \colon \{0,1\}^{n-1} \to A_{\sf rec\text{-}maj}$ such that ${\sf avgstretch}(\phi_{\sf rec\text{-}maj}) = O(1)$. (3) Let $A_{\sf tribes} = \{x \in \{0,1\}^n : {\sf tribes}(x) = 1\}$. There exists a bijection $\phi_{{\sf tribes}} \colon \{0,1\}^{n-1} \to A_{\sf tribes}$ such that ${\sf avgstretch}(\phi_{{\sf tribes}}) = O(\log(n))$. These results answer the questions raised by Benjamini et al.\ (FOCS 2014).


翻译:我们定义了美元的平均伸展量为 $\ = = = = = = = = = gStrach} (\ f) = = = = = = = = fthbb E] [\ f(x),\ f(x) $ 是 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

IEEE计算机科学基础研讨会(FOCS)是由IEEE计算机学会计算数学基础技术委员会(TCMF)主办的旗舰会议,涵盖了广泛的理论计算机科学。它每年秋季举行,并与每年春季举行的由ACM SIGACT赞助的姊妹会议——计算理论年度研讨会(STOC)配对。官网链接:http://ieee-focs.org/
专知会员服务
26+阅读 · 2021年4月2日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月2日
Arxiv
0+阅读 · 2022年6月30日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员