This paper assesses the equity impacts of for-hire autonomous vehicles (AVs) and investigates regulatory policies that promote spatial and social equity in future autonomous mobility ecosystems. To this end, we consider a multimodal transportation network, where a ride-hailing platform operates a fleet of AVs to offer mobility-on-demand services in competition with a public transit agency that offers transit services on a transportation network. A game-theoretic model is developed to characterize the intimate interactions between the ride-hailing platform, the transit agency, and multiclass passengers with distinct income levels. An algorithm is proposed to compute the Nash equilibrium of the game and conduct an ex-post evaluation of the performance of the obtained solution. Based on the proposed framework, we evaluate the spatial and social equity in transport accessibility using the Theil index, and find that although the proliferation of for-hire AVs in the ride-hailing network improves overall accessibility, the benefits are not fairly distributed among distinct locations or population groups, implying that the deployment of AVs will enlarge the existing spatial and social inequity gaps in the transportation network if no regulatory intervention is in place. To address this concern, we investigate two regulatory policies that can improve transport equity: (a) a minimum service-level requirement on ride-hailing services, which improves the spatial equity in the transport network; (b) a subsidy on transit services by taxing ride-hailing services, which promotes the use of public transit and improves the spatial and social equity of the transport network. We show that the minimum service-level requirement entails a trade-off: as a higher minimum service level is imposed, the spatial inequity reduces, but the social inequity will be exacerbated. On the other hand ...


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员