Light detection and ranging (LiDAR) remote sensing encompasses two major directions: data interpretation and parameter inversion. However, both directions rely heavily on costly and labor-intensive labeled data and field measurements, which constrains their scalability and spatiotemporal adaptability. Weakly Supervised Learning (WSL) provides a unified framework to address these limitations. This paper departs from the traditional view that treats interpretation and inversion as separate tasks and offers a systematic review of recent advances in LiDAR remote sensing from a unified WSL perspective. We cover typical WSL settings including incomplete supervision(e.g., sparse point labels), inexact supervision (e.g., scene-level tags), inaccurate supervision (e.g., noisy labels), and cross-domain supervision (e.g., domain adaptation/generalization) and corresponding techniques such as pseudo-labeling, consistency regularization, self-training, and label refinement, which collectively enable robust learning from limited and weak annotations.We further analyze LiDAR-specific challenges (e.g., irregular geometry, data sparsity, domain heterogeneity) that require tailored weak supervision, and examine how sparse LiDAR observations can guide joint learning with other remote-sensing data for continuous surface-parameter retrieval. Finally, we highlight future directions where WSL acts as a bridge between LiDAR and foundation models to leverage large-scale multimodal datasets and reduce labeling costs, while also enabling broader WSL-driven advances in generalization, open-world adaptation, and scalable LiDAR remote sensing.
翻译:暂无翻译