To speed up online testing, adaptive traffic experimentation through multi-armed bandit algorithms is rising as an essential complementary alternative to the fixed horizon A/B testing. Based on recent research on best arm identification and statistical inference with adaptively collected data, this paper derives and evaluates four Bayesian batch bandit algorithms (NB-TS, WB-TS, NB-TTTS, WB-TTTS), which are combinations of two ways of weighting batches (Naive Batch and Weighted Batch) and two Bayesian sampling strategies (Thompson Sampling and Top-Two Thompson Sampling) to adaptively determine traffic allocation. These derived Bayesian sampling algorithms are practically based on summary batch statistics of a reward metric for pilot experiments, where one of the combination WB-TTTS in this paper seems to be newly discussed. The comprehensive evaluation on the four Bayesian sampling algorithms covers trustworthiness, sensitivity and regret of a testing methodology. Moreover, the evaluation includes 4 real-world eBay experiments and 40 reproducible synthetic experiments to reveal the learnings, which covers both stationary and non-stationary situations. Our evaluation reveals that, (a) There exist false positives inflation with equivalent best arms, while seldom discussed in literatures; (b) To control false positives, connections between convergence of posterior optimal probabilities and neutral posterior reshaping are discovered; (c) WB-TTTS shows competitive recall, higher precision, and robustness against non-stationary trend; (d) NB-TS outperforms on minimizing regret trials except on precision and robustness; (e) WB-TTTS is a promising alternative if regret of A/B Testing is affordable, otherwise NB-TS is still a powerful choice with regret consideration for pilot experiments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员