Training effective text rerankers is crucial for information retrieval. Two strategies are widely used: contrastive learning (optimizing directly on ground-truth labels) and knowledge distillation (transferring knowledge from a larger reranker). While both have been studied extensively, a clear comparison of their effectiveness for training cross-encoder rerankers under practical conditions is needed. This paper empirically compares these strategies by training rerankers of different sizes (0.5B, 1.5B, 3B, 7B) and architectures (Transformer, Recurrent) using both methods on the same data, with a strong contrastive learning model acting as the distillation teacher. Our results show that knowledge distillation generally yields better in-domain and out-of-domain ranking performance than contrastive learning when distilling from a more performant teacher model. This finding is consistent across student model sizes and architectures. However, distilling from a teacher of the same capacity does not provide the same advantage, particularly for out-of-domain tasks. These findings offer practical guidance for choosing a training strategy based on available teacher models. We recommend using knowledge distillation to train smaller rerankers if a larger, more performant teacher is accessible; in its absence, contrastive learning remains a robust baseline. Our code implementation is made available to facilitate reproducbility.


翻译:训练有效的文本重排序器对于信息检索至关重要。目前广泛采用两种策略:对比学习(直接基于真实标签进行优化)和知识蒸馏(从更大的重排序器迁移知识)。尽管两者均已得到广泛研究,但在实际条件下对它们训练交叉编码器重排序器的有效性进行清晰比较仍有必要。本文通过使用两种方法在同一数据上训练不同规模(0.5B、1.5B、3B、7B)和架构(Transformer、循环网络)的重排序器,并以强对比学习模型作为蒸馏教师,对这两种策略进行了实证比较。结果表明,当从性能更优的教师模型进行蒸馏时,知识蒸馏通常能产生比对比学习更好的领域内和领域外排序性能。这一发现在不同学生模型规模和架构中均保持一致。然而,从相同容量的教师模型进行蒸馏则无法提供同等优势,尤其是在领域外任务中。这些发现为基于可用教师模型选择训练策略提供了实用指导。我们建议:若可获得更大、性能更强的教师模型,则使用知识蒸馏训练较小的重排序器;若无此条件,对比学习仍是稳健的基线方法。我们公开了代码实现以促进可复现性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员