An accurate odometry is essential for legged-wheel robots operating in unstructured terrains such as bumpy roads and staircases. Existing methods often suffer from pose drift due to their ignorance of terrain geometry. We propose a terrain-awared LiDAR-Inertial odometry (LIO) framework that approximates the terrain using Radial Basis Functions (RBF) whose centers are adaptively selected and weights are recursively updated. The resulting smooth terrain manifold enables ``soft constraints" that regularize the odometry optimization and mitigates the $z$-axis pose drift under abrupt elevation changes during robot's maneuver. To ensure the LIO's real-time performance, we further evaluate the RBF-related terms and calculate the inverse of the sparse kernel matrix with GPU parallelization. Experiments on unstructured terrains demonstrate that our method achieves higher localization accuracy than the state-of-the-art baselines, especially in the scenarios that have continuous height changes or sparse features when abrupt height changes occur.
翻译:暂无翻译