The widely used 'Counterfactual' definition of Causal Effects was derived for unbiasedness and accuracy - and not generalizability. We propose a Combinatorial definition for the External Validity (EV) of intervention effects. We first define the concept of an effect observation 'background'. We then formulate conditions for effect generalization based on their sets of (observed and unobserved) backgrounds. This reveals two limits for effect generalization: (1) when effects are observed under all their enumerable backgrounds, or, (2) when backgrounds have become sufficiently randomized. We use the resulting combinatorial framework to re-examine several issues in the original counterfactual formulation: out-of-sample validity, concurrent estimation of multiple effects, bias-variance tradeoffs, statistical power, and connections to current predictive and explaining techniques. Methodologically, the definitions also allow us to replace the parametric estimation problems that followed the counterfactual definition by combinatorial enumeration and randomization problems in non-experimental samples. We use this non-parametric framework to demonstrate (External Validity, Unconfoundness and Precision) tradeoffs in the performance of popular supervised, explaining, and causal-effect estimators. We also illustrate how the approach allows for the use of supervised and explaining methods in non-i.i.d. samples. The COVID19 pandemic highlighted the need for learning solutions to provide predictions in severally incomplete samples. We demonstrate applications in this pressing problem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员