In this study, we develop an asymptotic theory of nonparametric regression for locally stationary random fields (LSRFs) $\{{\bf X}_{{\bf s}, A_{n}}: {\bf s} \in R_{n} \}$ in $\mathbb{R}^{p}$ observed at irregularly spaced locations in $R_{n} =[0,A_{n}]^{d} \subset \mathbb{R}^{d}$. We first derive the uniform convergence rate of general kernel estimators, followed by the asymptotic normality of an estimator for the mean function of the model. Moreover, we consider additive models to avoid the curse of dimensionality arising from the dependence of the convergence rate of estimators on the number of covariates. Subsequently, we derive the uniform convergence rate and joint asymptotic normality of the estimators for additive functions. We also introduce approximately $m_{n}$-dependent RFs to provide examples of LSRFs. We find that these RFs include a wide class of L\'evy-driven moving average RFs.


翻译:在此研究中,我们为本地固定随机字段(LSRFs) $ ⁇ bf X ⁇ bf s}, A ⁇ n ⁇ :\bf s} $$\mathb{R ⁇ p} 美元观察到的不定期间距地点的美元的非参数回归性理论($ ⁇ n} =[0,A ⁇ n} ⁇ d} \ subset\mathb{R ⁇ d}。我们首先得出普通内核估测器的统一趋同率,然后得出模型平均功能的估测器的均匀性常态。此外,我们考虑添加模型,以避免因估算器的趋同率对同变量数的依赖性而导致的诅咒。随后,我们得出添加功能估测器的统一趋同率和联合的均匀性常态性。我们还引入了大约 $ ⁇ n} $依赖的普通估测器,以提供LSRFs平均功能的典型。我们发现这些累动式模型包括平均RFs。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月19日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员