Modulo sampling (MS) has been recently introduced to enhance the dynamic range of conventional ADCs by applying a modulo operator before sampling. This paper examines the identifiability of a measurement model where measurements are taken using a discrete Fourier transform (DFT) sensing matrix, followed by a modulo operator (modulo-DFT). Firstly, we derive a necessary and sufficient condition for the unique identification of the modulo-DFT sensing model based on the number of measurements and the indices of zero elements in the original signal. Then, we conduct a deeper analysis of three specific cases: when the number of measurements is a power of $2$, a prime number, and twice a prime number. Additionally, we investigate the identifiability of periodic bandlimited (PBL) signals under MS, which can be considered as the modulo-DFT sensing model with additional symmetric and conjugate constraints on the original signal. We also provide a necessary and sufficient condition based solely on the number of samples in one period for the unique identification of the PBL signal under MS, though with an ambiguity in the direct current (DC) component. Furthermore, we show that when the oversampling factor exceeds $3(1+1/P)$, the PBL signal can be uniquely identified with an ambiguity in the DC component, where $P$ is the number of harmonics, including the fundamental component, in the positive frequency part. Finally, we also present a recovery algorithm that estimates the original signal by solving integer linear equations, and we conduct simulations to validate our conclusions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员