We present the FlipDyn, a dynamic game in which two opponents (a defender and an adversary) choose strategies to optimally takeover a resource that involves a dynamical system. At any time instant, each player can take over the resource and thereby control the dynamical system after incurring a state-dependent and a control-dependent costs. The resulting model becomes a hybrid dynamical system where the discrete state (FlipDyn state) determines which player is in control of the resource. Our objective is to compute the Nash equilibria of this dynamic zero-sum game. Our contributions are four-fold. First, for any non-negative costs, we present analytical expressions for the saddle-point value of the FlipDyn game, along with the corresponding Nash equilibrium (NE) takeover strategies. Second, for continuous state, linear dynamical systems with quadratic costs, we establish sufficient conditions under which the game admits a NE in the space of linear state-feedback policies. Third, for scalar dynamical systems with quadratic costs, we derive the NE takeover strategies and saddle-point values independent of the continuous state of the dynamical system. Fourth and finally, for higher dimensional linear dynamical systems with quadratic costs, we derive approximate NE takeover strategies and control policies which enable the computation of bounds on the value functions of the game in each takeover state. We illustrate our findings through a numerical study involving the control of a linear dynamical system in the presence of an adversary.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
34+阅读 · 2022年12月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员