Context-aware translation can be achieved by processing a concatenation of consecutive sentences with the standard Transformer architecture. This paper investigates the intuitive idea of providing the model with explicit information about the position of the sentences contained in the concatenation window. We compare various methods to encode sentence positions into token representations, including novel methods. Our results show that the Transformer benefits from certain sentence position encoding methods on English to Russian translation if trained with a context-discounted loss (Lupo et al., 2022). However, the same benefits are not observed in English to German. Further empirical efforts are necessary to define the conditions under which the proposed approach is beneficial.


翻译:本文研究了一种直觉上合理的方法:将关于的句子在拼接窗口中的位置提供给模型。我们比较了多种将句子位置编码到标记表示的方法,包括一些新颖的方法。我们的实验结果表明,如果使用上下文折扣损失函数进行训练(Lupo等人,2022年),则我们提出的部分句子位置编码方法对英至俄语翻译有益,但对英至德语翻译则不具有同样的效果。因此,需要进一步实验来确定提出的方法的应用范围。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Transformer文本分类代码
专知会员服务
118+阅读 · 2020年2月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2018年4月12日
Arxiv
24+阅读 · 2017年3月9日
VIP会员
相关VIP内容
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员