This paper proposes CES, a task to evaluate the abilities of LLMs in simulating program execution and using that reasoning in programming tasks. Besides measuring the correctness of variable predictions during execution simulation, CES introduces the notion of coherence to determine whether the simulation complies with commonsense execution logic, even if the predicted values along the simulations are incorrect. This enables CES to rule out suspiciously correct output predictions due to reasoning shortcuts, hallucinations, or potential data leakage. CES also introduces a novel metric to measure reasoning consistency across tests with the same or different prime path coverage in a spectrum: strong, weak, and random. Evaluating 16 LLMs (including three reasoning LLMs) using CES indicates 81.42% coherent execution simulation on HumanEval, 46.92% and 53.08% of which result in correct and incorrect output predictions. Frontier LLMs such as GPT-4 and DeepSeek-R1 have the most incoherent execution reasoning, mostly due to natural language shortcuts. Despite relatively coherent execution simulation, LLMs' reasoning performance across different tests is inconsistent, mostly random (48.87%) or weak (45.37%), potentially explaining their weakness in programming tasks that require path-sensitive program analysis to succeed. We also compare CES with bug prediction/localization/repair, which intuitively requires control- and data-flow awareness. We observe that LLMs barely incorporate execution reasoning into their analysis for bug-related tasks, and their success is primarily due to inherent abilities in pattern matching or natural language shortcuts, if not data leakage. Without reasoning, there is a threat to the generalizability of LLMs in dealing with unseen bugs or patterns in different contexts. CES can be used to vet the suspicious success of LLMs in these tasks systematically.


翻译:暂无翻译

0
下载
关闭预览

相关内容

国际消费类电子产品展览会,简称国际消费电子展,常简称为CES,每年1月在美国内华达州拉斯维加斯举行,由消费电子协会赞助。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员