This work establishes conditional lower bounds for average-case {\em parity}-counting versions of the problems $k$-XOR, $k$-SUM, and $k$-OV. The main contribution is a set of self-reductions for the problems, providing the first specific distributions, for which: $\mathsf{parity}\text{-}k\text{-}OV$ is $n^{\Omega(\sqrt{k})}$ average-case hard, under the $k$-OV hypothesis (and hence under SETH), $\mathsf{parity}\text{-}k\text{-}SUM$ is $n^{\Omega(\sqrt{k})}$ average-case hard, under the $k$-SUM hypothesis, and $\mathsf{parity}\text{-}k\text{-}XOR$ is $n^{\Omega(\sqrt{k})}$ average-case hard, under the $k$-XOR hypothesis. Under the very believable hypothesis that at least one of the $k$-OV, $k$-SUM, $k$-XOR or $k$-Clique hypotheses is true, we show that parity-$k$-XOR, parity-$k$-SUM, and parity-$k$-OV all require at least $n^{\Omega(k^{1/3})}$ (and sometimes even more) time on average (for specific distributions). To achieve these results, we present a novel and improved framework for worst-case to average-case fine-grained reductions, building on the work of Dalirooyfard, Lincoln, and Vassilevska Williams, FOCS 2020.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员