Simple dynamical models can produce intricate behaviors in large networks. These behaviors can often be observed in a wide variety of physical systems captured by the network of interactions. Here we describe a phenomenon where the increase of dimensions self-consistently generates a force field due to dynamical instabilities. This can be understood as an unstable ("rumbling") tunneling mechanism between minima in an effective potential. We dub this collective and nonperturbative effect a "Lyapunov force" which steers the system towards the global minimum of the potential function, even if the full system has a constellation of equilibrium points growing exponentially with the system size. The system we study has a simple mapping to a flow network, equivalent to current-driven memristors. The mechanism is appealing for its physical relevance in nanoscale physics, and to possible applications in optimization, novel Monte Carlo schemes and machine learning.
翻译:简单的动态模型可以在大型网络中产生复杂的行为。 这些行为通常可以在互动网络所捕捉的各种物理系统中观察到。 我们在这里描述一个现象, 维度的增加自相矛盾地因动态不稳定而产生一个力场。 这可以被理解为在微型之间一个不稳定的( 隆隆的)隧道机制, 具有有效潜力。 我们把这种集体和非干扰效应说成是“ Lyapunov 力量 ”, 它将系统引向全球最小的潜在功能, 即使整个系统有一个平衡点星座随系统规模的大小而成倍增长。 我们研究的这个系统可以简单地映射到一个流动网络, 相当于当前驱动的分子。 这个机制在纳米物理学中, 以及可能应用到优化、 新的蒙特卡洛 计划和机器学习中。