A nonlinear Helmholtz (NLH) equation with high frequencies and corner singularities is discretized by the linear finite element method (FEM). After deriving some wave-number-explicit stability estimates and the singularity decomposition for the NLH problem, a priori stability and error estimates are established for the FEM on shape regular meshes including the case of locally refined meshes. Then a posteriori upper and lower bounds using a new residual-type error estimator, which is equivalent to the standard one, are derived for the FE solutions to the NLH problem. These a posteriori estimates have confirmed a significant fact that is also valid for the NLH problem, namely the residual-type estimator seriously underestimates the error of the FE solution in the preasymptotic regime, which was first observed by Babu\v{s}ka et al. [Int J Numer Methods Eng 40 (1997)] for a one-dimensional linear problem. Based on the new a posteriori error estimator, both the convergence and the quasi-optimality of the resulting adaptive finite element algorithm are proved the first time for the NLH problem, when the initial mesh size lying in the preasymptotic regime. Finally, numerical examples are presented to validate the theoretical findings and demonstrate that applying the continuous interior penalty (CIP) technique with appropriate penalty parameters can reduce the pollution errors efficiently. In particular, the nonlinear phenomenon of optical bistability with Gaussian incident waves is successfully simulated by the adaptive CIPFEM.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员