Journalists publish statements provided by people, or \textit{sources} to contextualize current events, help voters make informed decisions, and hold powerful individuals accountable. In this work, we construct an ontological labeling system for sources based on each source's \textit{affiliation} and \textit{role}. We build a probabilistic model to infer these attributes for named sources and to describe news articles as mixtures of these sources. Our model outperforms existing mixture modeling and co-clustering approaches and correctly infers source-type in 80\% of expert-evaluated trials. Such work can facilitate research in downstream tasks like opinion and argumentation mining, representing a first step towards machine-in-the-loop \textit{computational journalism} systems.


翻译:记者发表由人们或\ textit{ sources} 提供的声明, 以将当前事件背景化, 帮助选民做出知情决定, 并追究有权势的个人的责任。 在这项工作中, 我们根据每个来源的\ textit{ affiliation} 和\ textit{pole} 建立一个源的本体标签系统。 我们建立了一个概率模型, 用来推断指定来源的这些属性, 并将新闻文章描述为这些来源的混合物。 我们的模式优于现有的混合模型和联合组合方法, 并且正确推导了经专家评价的试验的80 { } 的来源类型 。 这样的工作可以促进下游任务的研究, 如意见和争论采矿, 代表着向机器运行中 流动 \ textit{computational irporty} 系统迈出的第一步 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年2月6日
Arxiv
4+阅读 · 2018年5月14日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员