The wireless blockchain network (WBN) concept, born from the blockchain deployed in wireless networks, has appealed to many network scenarios. Blockchain consensus mechanisms (CMs) are key to enabling nodes in a wireless network to achieve consistency without any trusted entity. However, consensus reliability will be seriously affected by the instability of communication links in wireless networks. Meanwhile, it is difficult for nodes in wireless scenarios to obtain a timely energy supply. Energy-intensive blockchain functions can quickly drain the power of nodes, thus degrading consensus performance. Fortunately, a symbiotic radio (SR) system enabled by cognitive backscatter communications can solve the above problems. In SR, the secondary transmitter (STx) transmits messages over the radio frequency (RF) signal emitted from a primary transmitter (PTx) with extremely low energy consumption, and the STx can provide multipath gain to the PTx in return. Such an approach is useful for almost all vote-based CMs, such as the Practical Byzantine Fault-tolerant (PBFT)-like and the RAFT-like CMs. This paper proposes symbiotic blockchain consensus (SBC) by transforming 6 PBFT-like and 4 RAFT-like state-of-the-art (SOTA) CMs to demonstrate universality. These new CMs will benefit from mutualistic transmission relationships in SR, making full use of the limited spectrum resources in WBN. Simulation results show that SBC can increase the consensus success rate of PBFT-like and RAFT-like by 54.1% and 5.8%, respectively, and reduce energy consumption by 9.2% and 23.7%, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CMS:内容管理系统
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员