A fundamental issue in the $\lambda$-calculus is to find appropriate notions for meaningfulness. Inspired by well-known results for the call-by-name $\lambda$-calculus (CbN), where meaningful terms are identified to the solvable ones, this paper validates the challenging claim that the notion of potential valuability (aka scrutability), previously introduced in the literature, adequately represents meaningfulness in the call-by-value $\lambda$-calculus (CbV). Akin to CbN, this claim is corroborated by proving two essential properties. The first one is genericity, stating that meaningless subterms have no bearing on evaluating normalizing terms. To prove this, we use a novel approach based on stratified reduction, indifferently applicable to CbN and CbV. The second property concerns consistency of the smallest congruence relation resulting from equating all meaningless terms (without equating all terms). We also show that such a congruence has a unique consistent and maximal extension, which coincides with a natural notion of observational equivalence. Our results thus supply the formal concepts and tools that validate the informal notion of meaningfulness underlying CbN and CbV.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Credal Learning Theory
Arxiv
0+阅读 · 2024年3月1日
Tree Cross Attention
Arxiv
0+阅读 · 2024年3月1日
Arxiv
0+阅读 · 2024年2月29日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Credal Learning Theory
Arxiv
0+阅读 · 2024年3月1日
Tree Cross Attention
Arxiv
0+阅读 · 2024年3月1日
Arxiv
0+阅读 · 2024年2月29日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员