Users bid in a transaction fee mechanism (TFM) to get their transactions included and confirmed by a blockchain protocol. Roughgarden (EC'21) initiated the formal treatment of TFMs and proposed three requirements: user incentive compatibility (UIC), miner incentive compatibility (MIC), and a form of collusion-resilience called OCA-proofness. Ethereum's EIP-1559 mechanism satisfies all three properties simultaneously when there is no contention between transactions, but loses the UIC property when there are too many eligible transactions to fit in a single block. Chung and Shi (SODA'23) considered an alternative notion of collusion-resilience, called c-side-constract-proofness (c-SCP), and showed that, when there is contention between transactions, no TFM can satisfy UIC, MIC, and c-SCP for any c at least 1. OCA-proofness asserts that the users and a miner should not be able to "steal from the protocol" and is intuitively weaker than the c-SCP condition, which stipulates that a coalition of a miner and a subset of users should not be able to profit through strategic deviations (whether at the expense of the protocol or of the users outside the coalition). Our main result is the first proof that, when there is contention between transactions, no (possibly randomized) direct-revelation TFM satisfies UIC, MIC, and OCA-proofness. This result resolves the main open question in Roughgarden(EC'21). We also suggest several relaxations of the basic model that allow our impossibility result to be circumvented.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员