Gaussian approximations are routinely employed in Bayesian statistics to ease inference when the target posterior is intractable. Although these approximations are asymptotically justified by Bernstein-von Mises type results, in practice the expected Gaussian behavior may poorly represent the shape of the posterior, thus affecting approximation accuracy. Motivated by these considerations, we derive an improved class of closed-form approximations of posterior distributions which arise from a new treatment of a third-order version of the Laplace method yielding approximations in a tractable family of skew-symmetric distributions. Under general assumptions which account for misspecified models and non-i.i.d. settings, this family of approximations is shown to have a total variation distance from the target posterior whose rate of convergence improves by at least one order of magnitude the one established by the classical Bernstein-von Mises theorem. Specializing this result to the case of regular parametric models shows that the same improvement in approximation accuracy can be also derived for polynomially bounded posterior functionals. Unlike other higher-order approximations, our results prove that it is possible to derive closed-form and valid densities which are expected to provide, in practice, a more accurate, yet similarly-tractable, alternative to Gaussian approximations of the target posterior, while inheriting its limiting frequentist properties. We strengthen such arguments by developing a practical skew-modal approximation for both joint and marginal posteriors that achieves the same theoretical guarantees of its theoretical counterpart by replacing the unknown model parameters with the corresponding MAP estimate. Empirical studies confirm that our theoretical results closely match the remarkable performance observed in practice, even in finite, possibly small, sample regimes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员