We study the theoretical properties of a variational Bayes method in the Gaussian Process regression model. We consider the inducing variables method introduced by Titsias (2009a) and derive sufficient conditions for obtaining contraction rates for the corresponding variational Bayes (VB) posterior. As examples we show that for three particular covariance kernels (Mat\'ern, squared exponential, random series prior) the VB approach can achieve optimal, minimax contraction rates for a sufficiently large number of appropriately chosen inducing variables. The theoretical findings are demonstrated by numerical experiments.


翻译:我们研究了高山进程回归模型中变式贝叶斯方法的理论属性。我们考虑了提齐亚斯(2009年a)采用的诱变变量方法,并为相应的变式贝叶斯后座获得收缩率创造了充分的条件。我们举例表明,对于三种特定的共变内核(马特尔恩,正方指数,前随机序列),VB方法可以为足够多的合适选择的诱变变量实现最佳、最小速率收缩率。理论结果通过数字实验得到证明。

0
下载
关闭预览

相关内容

Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员