Signal unmixing analysis decomposes data into basic patterns and is widely applied in chemical and biological research. Multivariate curve resolution (MCR), a branch of signal unmixing, separates mixed signals into components (base patterns) and their concentrations (intensity), playing a key role in understanding composition. Classical MCR is typically framed as matrix factorization (MF) and requires a user-specified number of components, usually unknown in real data. Once data or component number increases, the scalability of these MCR approaches face significant challenges. This study reformulates MCR as a data generative process (gMCR), and introduces an Energy-Based solver, EB-gMCR, that automatically discovers the smallest component set and their concentrations for reconstructing the mixed signals faithfully. On synthetic benchmarks with up to 256 components, EB-gMCR attains high reconstruction fidelity and recovers the component count within 5% at 20dB noise and near-exact at 30dB. On two public spectral datasets, it identifies the correct component count and improves component separation over MF-based MCR approaches (NMF variants, ICA, MCR-ALS). EB-gMCR is a general solver for fixed-pattern signal unmixing (components remain invariant across mixtures). Domain priors (non-negativity, nonlinear mixing) enter as plug-in modules, enabling adaptation to new instruments or domains without altering the core selection learning step. The source code is available at https://github.com/b05611038/ebgmcr_solver.


翻译:信号解混分析将数据分解为基本模式,广泛应用于化学与生物学研究。多元曲线分辨(MCR)作为信号解混的一个分支,将混合信号分离为组分(基础模式)及其浓度(强度),在理解组成成分中起关键作用。经典MCR通常被构建为矩阵分解(MF)问题,需要用户指定组分数量,而实际数据中该数量通常是未知的。一旦数据或组分数量增加,这些MCR方法的可扩展性面临显著挑战。本研究将MCR重新构建为数据生成过程(gMCR),并引入一种基于能量的求解器——EB-gMCR,该求解器能自动发现最小的组分集合及其浓度,以高保真度重建混合信号。在包含多达256个组分的合成基准测试中,EB-gMCR实现了高重建保真度,在20dB噪声下恢复的组分数量误差在5%以内,在30dB噪声下接近精确。在两个公开光谱数据集上,该方法识别出正确的组分数量,并在组分分离性能上优于基于MF的MCR方法(NMF变体、ICA、MCR-ALS)。EB-gMCR是一种适用于固定模式信号解混(组分在不同混合物中保持不变)的通用求解器。领域先验(非负性、非线性混合)可作为插件模块集成,使其能够适应新仪器或领域,而无需改变核心选择学习步骤。源代码可在 https://github.com/b05611038/ebgmcr_solver 获取。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员