We consider Bayesian inference for large scale inverse problems, where computational challenges arise from the need for repeated evaluations of an expensive forward model. This renders most Markov chain Monte Carlo approaches infeasible, since they typically require $O(10^4)$ model runs, or more. Moreover, the forward model is often given as a black box or is impractical to differentiate. Therefore derivative-free algorithms are highly desirable. We propose a framework, which is built on Kalman methodology, to efficiently perform Bayesian inference in such inverse problems. The basic method is based on an approximation of the filtering distribution of a novel mean-field dynamical system into which the inverse problem is embedded as an observation operator. Theoretical properties of the mean-field model are established for linear inverse problems, demonstrating that the desired Bayesian posterior is given by the steady state of the law of the filtering distribution of the mean-field dynamical system, and proving exponential convergence to it. This suggests that, for nonlinear problems which are close to Gaussian, sequentially computing this law provides the basis for efficient iterative methods to approximate the Bayesian posterior. Ensemble methods are applied to obtain interacting particle system approximations of the filtering distribution of the mean-field model; and practical strategies to further reduce the computational and memory cost of the methodology are presented, including low-rank approximation and a bi-fidelity approach. The effectiveness of the framework is demonstrated in several numerical experiments, including proof-of-concept linear/nonlinear examples and two large-scale applications: learning of permeability parameters in subsurface flow; and learning subgrid-scale parameters in a global climate model from time-averaged statistics.


翻译:我们认为,对于大规模反向问题,巴耶斯的推论是大规模的反向问题,因为需要反复评估昂贵的远期模型,从而产生计算上的挑战。这使得大多数马尔科夫链的蒙特卡洛·蒙泰·卡洛(Markov 链路的Monte Carlo)的方法不可行,因为它们通常需要10美元或更多的模式运行。此外,远期模型往往被作为黑盒列出,或者不切实际区分。因此,无衍生的算法是非常可取的。我们提议了一个框架,它建立在卡尔曼方法上,以便有效地在这种反向问题中执行巴耶斯的推论。 基本方法基于对新颖的平均值动态参数的过滤分布的近似性分布,使反向的问题嵌入一个全新的中线性动态参数。 平均值模型的理论特性是直径直线化的直径直线性参数分布系统,包括直径直的近的基比对流法的精确度分析方法。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【如何做研究】How to research ,22页ppt
专知会员服务
114+阅读 · 2021年4月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员