This paper studies a multiaccess coded caching (MACC) where the connectivity topology between the users and the caches can be described by a class of combinatorial designs. Our model includes as special cases several MACC topologies considered in previous works. The considered MACC network includes a server containing $N$ files, $\Gamma$ cache nodes and $K$ cacheless users, where each user can access $L$ cache nodes. The server is connected to the users via an error-free shared link, while the users can retrieve the cache content of the connected cache-nodes while the users can directly access the content in their connected cache-nodes. Our goal is to minimise the worst-case transmission load on the shared link in the delivery phase. The main limitation of the existing MACC works is that only some specific access topologies are considered, and thus the number of users $K$ should be either linear or exponential to $\Gamma$. We overcome this limitation by formulating a new access topology derived from two classical combinatorial structures, referred to as the $t$-design and the $t$-group divisible design. In these topologies, $K$ scales linearly, polynomially, or even exponentially with $\Gamma$. By leveraging the properties of the considered combinatorial structures, we propose two classes of coded caching schemes for a flexible number of users, where the number of users can scale linearly, polynomially or exponentially with the number of cache nodes. In addition, our schemes can unify most schemes for the shared link network and unify many schemes for the multi-access network except for the cyclic wrap-around topology.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月13日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员