We investigate several online packing problems in which convex polygons arrive one by one and have to be placed irrevocably into a container, while the aim is to minimize the used space. Among other variants, we consider strip packing and bin packing, where the container is the infinite horizontal strip $[0,\infty)\times [0,1]$ or a collection of $1 \times 1$ bins, respectively. We draw interesting connections to the following online sorting problem OnlineSorting$[\gamma,n]$: We receive a stream of real numbers $s_1,\ldots,s_n$, $s_i\in[0,1]$, one by one. Each real must be placed in an array $A$ with $\gamma n$ initially empty cells without knowing the subsequent reals. The goal is to minimize the sum of differences of consecutive reals in $A$. The offline optimum is to place the reals in sorted order so the cost is at most $1$. We show that for any $\Delta$-competitive online algorithm of OnlineSorting$[\gamma,n]$, it holds that $\gamma \Delta \in\Omega(\log n/\log \log n)$. We use this lower bound to prove the non-existence of competitive algorithms for various online translational packing problems of convex polygons, among them strip packing, bin packing and perimeter packing. This also implies that there exists no online algorithm that can pack all streams of pieces of diameter and total area at most $\delta$ into the unit square. These results are in contrast to the case when the pieces are restricted to rectangles, for which competitive algorithms are known. Likewise, the offline versions of packing convex polygons have constant factor approximation algorithms. As a complement, we also include algorithms for both online sorting and translation-only online strip packing with non-trivial competitive ratios. Our algorithm for strip packing relies on a new technique for recursively subdividing the strip into parallelograms of varying height, thickness and slope.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员