Federated recommendation system is a recently emerging architecture, which provides recommendation services without exposing users' private data. Existing methods are mainly designed to recommend items already existing in the system. In practical scenarios, the system continuously introduces new items and recommends them to users, i.e., cold-start recommendation. To recommend cold items, existing federated recommendation models require collecting new interactions from users and retraining the model, which is time-consuming and poses a privacy threat to users' sensitive information. This paper presents a novel Item-guided Federated aggregation for cold-start Recommendation (IFedRec) framework. The IFedRec exchanges the item embedding to learn the common item preference semantic and preserves other model parameters locally to capture user personalization. Besides, it deploys a meta attribute network on the server to learn the item feature semantic, and a semantic alignment mechanism is presented to align both kinds of item semantic. When the new items arrive, each client can make recommendations with item feature semantic learned from the meta attribute network by incorporating the locally personalized model without retraining. Experiments on four benchmark datasets demonstrate IFedRec's outstanding performance for cold-start recommendation. Besides, in-depth analysis verifies IFedRec's learning ability for cold items while protecting user's privacy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员