Recommendation systems suffer in the strict cold-start (SCS) scenario, where the user-item interactions are entirely unavailable. The ID-based approaches completely fail to work. Cold-start recommenders, on the other hand, leverage item contents to map the new items to the existing ones. However, the existing SCS recommenders explore item contents in coarse-grained manners that introduce noise or information loss. Moreover, informative data sources other than item contents, such as users' purchase sequences and review texts, are ignored. We explore the role of the fine-grained item attributes in bridging the gaps between the existing and the SCS items and pre-train a knowledgeable item-attribute graph for SCS item recommendation. Our proposed framework, ColdGPT, models item-attribute correlations into an item-attribute graph by extracting fine-grained attributes from item contents. ColdGPT then transfers knowledge into the item-attribute graph from various available data sources, i.e., item contents, historical purchase sequences, and review texts of the existing items, via multi-task learning. To facilitate the positive transfer, ColdGPT designs submodules according to the natural forms of the data sources and coordinates the multiple pre-training tasks via unified alignment-and-uniformity losses. Our pre-trained item-attribute graph acts as an implicit, extendable item embedding matrix, which enables the SCS item embeddings to be easily acquired by inserting these items and propagating their attributes' embeddings. We carefully process three public datasets, i.e., Yelp, Amazon-home, and Amazon-sports, to guarantee the SCS setting for evaluation. Extensive experiments show that ColdGPT consistently outperforms the existing SCS recommenders by large margins and even surpasses models that are pre-trained on 75-224 times more, cross-domain data on two out of four datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员