Given integers $n > k > 0$, and a set of integers $L \subset [0, k-1]$, an \emph{$L$-system} is a family of sets $\mathcal{F} \subset \binom{[n]}{k}$ such that $|F \cap F'| \in L$ for distinct $F, F'\in \mathcal{F}$. $L$-systems correspond to independent sets in a certain generalized Johnson graph $G(n, k, L)$, so that the maximum size of an $L$-system is equivalent to finding the independence number of the graph $G(n, k, L)$. The \emph{Lov\'asz number} $\vartheta(G)$ is a semidefinite programming approximation of the independence number $\alpha$ of a graph $G$. In this paper, we determine the leading order term of $\vartheta(G(n, k, L))$ of any generalized Johnson graph with $k$ and $L$ fixed and $n\rightarrow \infty$. As an application of this theorem, we give an explicit construction of a graph $G$ on $n$ vertices with a large gap between the Lov\'asz number and the Shannon capacity $c(G)$. Specifically, we prove that for any $\epsilon > 0$, for sufficiently large $n$ there is a generalized Johnson graph $G$ on $n$ vertices which has ratio $\vartheta(G)/c(G) = \Omega(n^{1-\epsilon})$, which improves on all known constructions. The graph $G$ \textit{a fortiori} also has ratio $\vartheta(G)/\alpha(G) = \Omega(n^{1-\epsilon})$, which greatly improves on the best known explicit construction.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
138+阅读 · 2022年9月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月2日
Arxiv
0+阅读 · 2024年5月30日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员