Leximin is a common approach to multi-objective optimization, frequently employed in fair division applications. In leximin optimization, one first aims to maximize the smallest objective value; subject to this, one maximizes the second-smallest objective; and so on. Often, even the single-objective problem of maximizing the smallest value cannot be solved accurately. What can we hope to accomplish for leximin optimization in this situation? Recently, Henzinger et al. (2022) defined a notion of \emph{approximate} leximin optimality. Their definition, however, considers only an additive approximation. In this work, we first define the notion of approximate leximin optimality, allowing both multiplicative and additive errors. We then show how to compute, in polynomial time, such an approximate leximin solution, using an oracle that finds an approximation to a single-objective problem. The approximation factors of the algorithms are closely related: an $(\alpha,\epsilon)$-approximation for the single-objective problem (where $\alpha \in (0,1]$ and $\epsilon \geq 0$ are the multiplicative and additive factors respectively) translates into an $\left(\frac{\alpha^2}{1-\alpha + \alpha^2}, \frac{\epsilon}{1-\alpha +\alpha^2}\right)$-approximation for the multi-objective leximin problem, regardless of the number of objectives. Finally, we apply our algorithm to obtain an approximate leximin solution for the problem of \emph{stochastic allocations of indivisible goods}. For this problem, assuming sub-modular objectives functions, the single-objective egalitarian welfare can be approximated, with only a multiplicative error, to an optimal $1-\frac{1}{e}\approx 0.632$ factor w.h.p. We show how to extend the approximation to leximin, over all the objective functions, to a multiplicative factor of $\frac{(e-1)^2}{e^2-e+1} \approx 0.52$ w.h.p or $\frac{1}{3}$ deterministically.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员