We present a novel approach to probabilistic electricity price forecasting which utilizes distributional neural networks. The model structure is based on a deep neural network that contains a so-called probability layer. The network's output is a parametric distribution with 2 (normal) or 4 (Johnson's SU) parameters. In a forecasting study involving day-ahead electricity prices in the German market, our approach significantly outperforms state-of-the-art benchmarks, including LASSO-estimated regressions and deep neural networks combined with Quantile Regression Averaging. The obtained results not only emphasize the importance of higher moments when modeling volatile electricity prices, but also -- given that probabilistic forecasting is the essence of risk management -- provide important implications for managing portfolios in the power sector.


翻译:我们提出了一个利用分布式神经网络进行概率电价预测的新办法。模型结构基于一个包含所谓概率层的深层神经网络。网络的输出是具有2(正常)或4(Johnson's SU)参数的参数分布。在一项涉及德国市场日头电价的预测研究中,我们的方法大大优于最新基准,包括LASSO估计的回归和与量反反差动相结合的深神经网络。获得的结果不仅强调了建模波动电价时较高时刻的重要性,而且 -- -- 鉴于概率预测是风险管理的精髓 -- -- 也为管理电力部门的组合提供了重要影响。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员