Propensity score (PS) methods are widely used to estimate treatment effects in non-randomized studies. Variance is typically estimated using sandwich or bootstrap methods, which can either treat the PS as estimated or fixed. The latter is thought to be conservative. Comparisons between the sandwich and bootstrap estimators have been compared in moderate to large sample sizes, favoring the bootstrap estimator. With the growing interest in treatments for rare disease and externally controlled clinical trials, very small sample sizes are not uncommon and the asymptotic properties of sandwich estimators may not hold. Bootstrap methods that allow for PS re-estimation can also generate problems with quasi-separation in small samples. It is unclear whether it is safe to prefer sandwich estimators or to assume that treating the PS as fixed is conservative. We conducted a Monte Carlo simulation to compare the performance of bootstrap versus sandwich variance and CI estimators for average treatment effects estimated with PS methods. We systematically evaluated the impact of treating the PS as fixed versus re-estimating it. These methodological comparisons were performed using Inverse Probability of Treatment Weighting (IPTW) and Augmented Inverse Probability of Treatment Weighting (AIPW) estimators. Simulations assessed performance under various conditions, including small sample sizes and different outcome and treatment prevalences. We illustrate the differences in our motivating example, the LIMIT-JIA trial. We show that the sandwich estimators can perform quite poorly in small samples, and fixed PS methods are not necessarily conservative. A stratified bootstrap avoids quasi-separation and performs well. Differences were large enough to alter statistical conclusions in our motivating example, LIMIT-JIA.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员