Recent advances in many domains require more and more complicated experiment design. Such complicated experiments often have many parameters, which necessitate parameter tuning. Tree-structured Parzen estimator (TPE), a Bayesian optimization method, is widely used in recent parameter tuning frameworks. Despite its popularity, the roles of each control parameter and the algorithm intuition have not been discussed so far. In this tutorial, we will identify the roles of each control parameter and their impacts on hyperparameter optimization using a diverse set of benchmarks. We compare our recommended setting drawn from the ablation study with baseline methods and demonstrate that our recommended setting improves the performance of TPE. Our TPE implementation is available at https://github.com/nabenabe0928/tpe/tree/single-opt.


翻译:近年来,许多领域的最新进展需要更复杂的实验设计。这些复杂的实验通常具有许多参数,需要参数调优。树状Parzen估计器(TPE),一种贝叶斯优化方法,广泛应用于最近的参数调整框架中。尽管其受欢迎程度很高,但至今未讨论每个控制参数及其直觉的作用。在本教程中,我们将使用多样的基准测试来确定每个控制参数的作用及其对超参数优化的影响。我们将建立与基准方法的比较,证明我们从擦除研究中得出的推荐设置优化了TPE的性能。我们的TPE实现可在https://github.com/nabenabe0928/tpe/tree/single-opt上获得。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
41+阅读 · 2020年10月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2017年3月9日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
41+阅读 · 2020年10月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员