The optimization problem associated to fitting two-layer ReLU networks having $d$~inputs, $k$~neurons, and labels generated by a target network, is considered. Two types of infinite families of spurious minima, giving one minimum per $d$, were recently found. The loss at minima belonging to the first type converges to zero as $d$ increases. In the second type, the loss remains bounded away from zero. That being so, how may one avoid minima belonging to the latter type? Fortunately, such minima are never detected by standard optimization methods. Motivated by questions concerning the nature of this phenomenon, we develop methods to study distinctive analytic properties of hidden minima. By existing analyses, the Hessian spectrum of both types agree modulo $O(d^{-1/2})$-terms -- not promising. Thus, rather, our investigation proceeds by studying curves along which the loss is minimized or maximized, generally referred to as tangency arcs. We prove that apparently far removed group representation-theoretic considerations concerning the arrangement of subspaces invariant to the action of subgroups of $S_d$, the symmetry group over $d$ symbols, relative to ones fixed by the action yield a precise description of all finitely many admissible types of tangency arcs. The general results used for the loss function reveal that arcs emanating from hidden minima differ, characteristically, by their structure and symmetry, precisely on account of the $O(d^{-1/2})$-eigenvalue terms absent in previous work, indicating in particular the subtlety of the analysis. The theoretical results, stated and proved for o-minimal structures, show that the set comprising all tangency arcs is topologically sufficiently tame to enable a numerical construction of tangency arcs and so compare how minima, both types, are positioned relative to adjacent critical points.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员