Predictive map theory, one of the theories explaining spatial learning in animals, is based on successor representation (SR) learning algorithms. In the real world, agents such as animals and robots are subjected to noisy observations, which can lead to suboptimal actions or even failure during learning. In this study, we compared the performance of Successor Features (SFs) and Predecessor Features (PFs) algorithms in a noisy one-dimensional maze environment. Our results demonstrated that PFs consistently outperformed SFs in terms of cumulative reward and average step length, with higher resilience to noise. This superiority could be due to PFs' ability to transmit temporal difference errors to more preceding states. We also discuss the biological mechanisms involved in PFs learning for spatial navigation. This study contributes to the theoretical research on computational neuroscience using reinforcement learning algorithms, and highlights the practical potential of PFs in robotics, game AI, and autonomous vehicle navigation.


翻译:

0
下载
关闭预览

相关内容

专知会员服务
24+阅读 · 2021年7月10日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月29日
VIP会员
相关VIP内容
专知会员服务
24+阅读 · 2021年7月10日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员