The interplay between mood and eating has been the subject of extensive research within the fields of nutrition and behavioral science, indicating a strong connection between the two. Further, phone sensor data have been used to characterize both eating behavior and mood, independently, in the context of mobile food diaries and mobile health applications. However, limitations within the current body of literature include: i) the lack of investigation around the generalization of mood inference models trained with passive sensor data from a range of everyday life situations, to specific contexts such as eating, ii) no prior studies that use sensor data to study the intersection of mood and eating, and iii) the inadequate examination of model personalization techniques within limited label settings, as we commonly experience in mood inference. In this study, we sought to examine everyday eating behavior and mood using two datasets of college students in Mexico (N_mex = 84, 1843 mood-while-eating reports) and eight countries (N_mul = 678, 329K mood reports incl. 24K mood-while-eating reports), containing both passive smartphone sensing and self-report data. Our results indicate that generic mood inference models decline in performance in certain contexts, such as when eating. Additionally, we found that population-level (non-personalized) and hybrid (partially personalized) modeling techniques were inadequate for the commonly used three-class mood inference task (positive, neutral, negative). Furthermore, we found that user-level modeling was challenging for the majority of participants due to a lack of sufficient labels and data from the negative class. To address these limitations, we employed a novel community-based approach for personalization by building models with data from a set of similar users to a target user.


翻译:暂无翻译

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员