Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs). However, studies show that RAG is not consistently effective and can even mislead LLMs due to noisy or incorrect retrieved texts. This suggests that RAG possesses a duality including both benefit and detriment. Although many existing methods attempt to address this issue, they lack a theoretical explanation for the duality in RAG. The benefit and detriment within this duality remain a black box that cannot be quantified or compared in an explainable manner. This paper takes the first step in theoretically giving the essential explanation of benefit and detriment in RAG by: (1) decoupling and formalizing them from RAG prediction, (2) approximating the gap between their values by representation similarity and (3) establishing the trade-off mechanism between them, to make them explainable, quantifiable, and comparable. We demonstrate that the distribution difference between retrieved texts and LLMs' knowledge acts as double-edged sword, bringing both benefit and detriment. We also prove that the actual effect of RAG can be predicted at token level. Based on our theory, we propose a practical novel method, X-RAG, which achieves collaborative generation between pure LLM and RAG at token level to preserve benefit and avoid detriment. Experiments in real-world tasks based on LLMs including OPT, LLaMA-2, and Mistral show the effectiveness of our method and support our theoretical results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员