Large language models (LLMs) remain vulnerable to sophisticated prompt engineering attacks that exploit contextual framing to bypass safety mechanisms, posing significant risks in cybersecurity applications. We introduce Jailbreak Mimicry, a systematic methodology for training compact attacker models to automatically generate narrative-based jailbreak prompts in a one-shot manner. Our approach transforms adversarial prompt discovery from manual craftsmanship into a reproducible scientific process, enabling proactive vulnerability assessment in AI-driven security systems. Developed for the OpenAI GPT-OSS-20B Red-Teaming Challenge, we use parameter-efficient fine-tuning (LoRA) on Mistral-7B with a curated dataset derived from AdvBench, achieving an 81.0% Attack Success Rate (ASR) against GPT-OSS-20B on a held-out test set of 200 items. Cross-model evaluation reveals significant variation in vulnerability patterns: our attacks achieve 66.5% ASR against GPT-4, 79.5% on Llama-3 and 33.0% against Gemini 2.5 Flash, demonstrating both broad applicability and model-specific defensive strengths in cybersecurity contexts. This represents a 54x improvement over direct prompting (1.5% ASR) and demonstrates systematic vulnerabilities in current safety alignment approaches. Our analysis reveals that technical domains (Cybersecurity: 93% ASR) and deception-based attacks (Fraud: 87.8% ASR) are particularly vulnerable, highlighting threats to AI-integrated threat detection, malware analysis, and secure systems, while physical harm categories show greater resistance (55.6% ASR). We employ automated harmfulness evaluation using Claude Sonnet 4, cross-validated with human expert assessment, ensuring reliable and scalable evaluation for cybersecurity red-teaming. Finally, we analyze failure mechanisms and discuss defensive strategies to mitigate these vulnerabilities in AI for cybersecurity.
翻译:暂无翻译