We introduce the abstract setting of presheaf category on a thick category of cubes. Precubical sets, symmetric transverse sets, symmetric precubical sets and the new category of (non-symmetric) transverse sets are examples of this structure. All these presheaf categories share the same metric and homotopical properties from a directed homotopy point of view. This enables us to extend Raussen's notion of natural $d$-path for each of them. Finally, we adapt Ziemiański's notion of cube chain to this abstract setting and we prove that it has the expected behavior on precubical sets. As an application, we verify that the formalization of the parallel composition with synchronization of process algebra using the coskeleton functor of the category of symmetric transverse sets has a category of cube chains with the correct homotopy type.


翻译:我们引入了厚立方体范畴上预层范畴的抽象框架。预立方集、对称横贯集、对称预立方集以及新范畴(非对称)横贯集均为该结构的实例。从有向同伦观点来看,所有这些预层范畴均具有相同的度量与同伦性质。这使我们能够为其中每个范畴扩展Raussen的自然$d$-路径概念。最后,我们将Ziemiański的立方链概念适配至此抽象框架,并证明其在预立方集上具有预期性质。作为应用,我们验证了使用对称横贯集范畴的余骨架函子对进程代数同步并行组合的形式化,其立方链范畴具有正确的同伦类型。

0
下载
关闭预览

相关内容

【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
36+阅读 · 2021年8月17日
专知会员服务
42+阅读 · 2021年4月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
36+阅读 · 2021年8月17日
专知会员服务
42+阅读 · 2021年4月2日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员