This paper is the second one of two serial articles, whose goal is to prove convergence of HX Preconditioner (proposed by Hiptmair and Xu, 2007) for Maxwell's equations with jump coefficients. In this paper, based on the auxiliary results developed in the first paper (Hu, 2017), we establish a new regular Helmholtz decomposition for edge finite element functions in three dimensions, which is nearly stable with respect to a weight function. By using this Helmholtz decomposition, we give an analysis of the convergence of the HX preconditioner for the case with strongly discontinuous coefficients. We show that the HX preconditioner possesses fast convergence, which not only is nearly optimal with respect to the finite element mesh size but also is independent of the jumps in the coefficients across the interface between two neighboring subdomains.


翻译:本文是两篇系列文章中的第二篇,这两篇系列文章的目标是证明HX预设物(由Hiptmair和Xu提出,2007年)与Maxwell的公式与跳系数的趋同。在本文中,我们根据第一份论文(Hu, 2017年)中得出的辅助结果,建立了一个新的定期Helmholtz分解法,用于三个维度的边缘有限元素功能,这在重量函数方面几乎稳定。通过使用Helmholtz分解法,我们分析了本案HX预设物与高度不连续系数的趋同情况。我们表明,HX预设物具有快速趋同性,这不仅与有限元素中位大小几乎是最佳的,而且独立于两个相邻子域界面的系数跳动。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员