At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus $q=\mathrm{poly}(n)$ and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner's algorithm (CRYPTO 2002), run over the corresponding dual problem, and the Aharonov-Regev distinguisher (JACM 2005). Hence the subexponential Wagner step alone should be of interest for solving this dual problem - namely, the Short Integer Solution problem (SIS) - but this appears to be undocumented so far. We re-interpret this Wagner step as walking backward through a chain of projected lattices, zigzagging through some auxiliary superlattices. We further randomize the bucketing step using Gaussian randomized rounding to exploit the powerful discrete Gaussian machinery. This approach avoids sample amplification and turns Wagner's algorithm into an approximate discrete Gaussian sampler for $q$-ary lattices. For an SIS lattice with $n$ equations modulo $q$, this algorithm runs in subexponential time $\exp(O(n/\log \log n))$ to reach a Gaussian width parameter $s = q/\mathrm{polylog}(n)$ only requiring $m = n + \omega(n/\log \log n)$ many SIS variables. This directly provides a provable algorithm for solving the Short Integer Solution problem in the infinity norm ($\mathrm{SIS}^\infty$) for norm bounds $\beta = q/\mathrm{polylog}(n)$. This variant of SIS underlies the security of the NIST post-quantum cryptography standard Dilithium. Despite its subexponential complexity, Wagner's algorithm does not appear to threaten Dilithium's concrete security.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CRYPTO:International Cryptology Conference。 Explanation:国际密码学会议。 Publisher:Springer。 SIT:http://dblp.uni-trier.de/db/conf/crypto/
专知会员服务
33+阅读 · 2021年3月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员