We give a compositional, information-theoretic framework that turns short programs into locality on many independent blocks, and combine it with symmetry and sparsity of masked random Unique-SAT to obtain distributional lower bounds that contradict the self-reduction upper bound under $\mathsf{P}=\mathsf{NP}$. We work in the weakness quantale $w_Q=K_{\mathrm{poly}}(\cdot\mid\cdot)$. For an efficiently samplable ensemble $D_m$ made by masking random $3$-CNFs with fresh $S_m\ltimes(\mathbb{Z}_2)^m$ symmetries and a small-seed Valiant--Vazirani isolation layer, we prove a Switching-by-Weakness normal form: for any polytime decoder $P$ of description length $\le \delta t$ (with $t=\Theta(m)$ blocks), a short wrapper $W$ makes $(P\circ W)$ per-bit local on a $\gamma$-fraction of blocks. Two ingredients then force near-randomness on $\Omega(t)$ blocks for every short decoder: (a) a sign-invariant neutrality lemma giving $\Pr[X_i=1\mid \mathcal{I}]=1/2$ for any sign-invariant view $\mathcal{I}$; and (b) a template sparsification theorem at logarithmic radius showing that any fixed local rule appears with probability $m^{-\Omega(1)}$. Combined with single-block bounds for tiny $\mathrm{ACC}^0$/streaming decoders, this yields a success bound $2^{-\Omega(t)}$ and, by Compression-from-Success, $K_{\mathrm{poly}}\big((X_1,\ldots,X_t)\mid(\Phi_1,\ldots,\Phi_t)\big)\ge \eta t$. If $\mathsf{P}=\mathsf{NP}$, a uniform constant-length program maps any on-promise instance to its unique witness in polytime (bit fixing via a $\mathrm{USAT}$ decider), so $K_{\mathrm{poly}}(X\mid\Phi)\le O(1)$ and the tuple complexity is $O(1)$, contradicting the linear bound. The proof is non-relativizing and non-natural; symmetry, sparsification, and switching yield a quantale upper-lower clash, hence $\mathsf{P}\ne\mathsf{NP}$.
 翻译:暂无翻译